
best practices for
encryption in android™
SUBHEADER VALUE PROPOSTION STATEMENT GOES HERE

developer.motorola.com/enterprise

introduction

Android has featured commercial and government-grade encryption
libraries from its earliest releases. The Androidtm encryption libraries
make it possible for organizations to protect data on a mobile device
with the highest level of security. The best data security practice is to
not store corporate data on a mobile device, but sometimes this can-
not be avoided (for example, if an app needs to keep working even
when there is no data connection).

There are numerous examples within the world of encryption where
mistakes have compromised security goals. Some of the security
libraries in the javax.crypto package have non-obvious APIs, and ref-
erence material can be thin and hard to find. This white paper draws
together a number of “best practices” to use when designing Android
apps that depend on encryption. This is not an exhaustive list. It is a
starting point to raise awareness about the kinds of issues you need to
consider when working with encryption software.

WHITE PAPER BEST PRACTICES FOR ENCRYPTION IN ANDROID™ 2

Figure 1

Terminology
of Encryption

SECRET
MEETING

SECRET
MEETING

step 1 step 2 step 3

Sender gives receiver
a copy of the key they
will use.

Sender encrypts the
plaintext to produce a
ciphertext which she
sends to her contact.

Receiver gets the ciphertext
and uses his copy of the key
to decrypt it, revealing a copy
of the plaintext.

CIPHERTEXT

To review sample source code which implements this complete process, please refer to “Using the
Advanced Encryption Standard in Android” Technical Article.
http://developer.motorola.com/docs/using_the_advanced_encryption_standard_in_android/

WHITE PAPER BEST PRACTICES FOR ENCRYPTION IN ANDROID™ 3

best practices
Encryption best practices fall into two categories - practices that relate to good security discipline

generally, and practices that relate to software design and development.

PRACTICES RELATING TO GOOD SECURITY DISCIPLINE GENERALLY:
1. Assume that anything stored on the device is vulnerable to reading by someone who has physical

possession of the device. In particular, never store the plaintext secret key on the device. One way

to avoid storing the secret key on the device is to generate the secret key whenever you need it, by

deriving it from a human-friendly password supplied by prompting the user. This technique is

described with sample code in the technical article at reference 4 below.

Although encryption doesn’t prevent an attacker from reading the encrypted bits from a file, it pre-

vents him from seeing the decrypted data. Mobile Device Management consoles have the “remote

wipe” feature because of the assumption that anything stored on the device can be read by some-

one who has the device (regardless of file permissions, user IDs, etc).

2. Use standard security algorithms to solve standard security problems.

An example of failure to use standard algorithms is the Content Scramble System

used to assert Digital Rights Management (DRM) on DVD movies. A proprietary

algorithm was created for this application. Its flaws were revealed by reverse engi-

neering, and it was broken within a couple of years. Shortly after that, it was sepa-

rately discovered that errors in the design of the algorithm reduced the effective

size of the key to only 16 bits. The reduced key made brute force attacks (trying

every key in the key space) not just feasible, but trivial. A major factor behind the

movie industry’s promotion of Blu-ray video players is to greatly strengthen DRM

controls (in addition to support for larger files and high definition formats).

3. The admonition to use standard security algorithms extends to using standard

implementations of those algorithms.

An example where this best practice was not followed concerned an early imple-

mentation of Unix. A replacement terminal login manager was written. This compo-

nent is part of the security framework, and prompts for a username/password pair

to check for authorized access. Unlike more secure versions of the component, this

implementation checked that the username existed, before checking the password.

If the username did not exist, there was no password to check against, and it

immediately returned a failure. If the username did exist, the login manager would

go on to check the password, which took a fractionally longer time. The slight dif-

ference in timing between “password comparison” and “no password comparison”

was enough to leak information about whether a username was valid or not.

For example, if you need to

create an encrypted session

between a client and a server,

your first thought should be

to design it as a web service

using an HTTPS session,

rather than designing a new

protocol. HTTPS is a well-

tested and standard way to

create and maintain a special-

purpose VPN connection

between a browser and a

web server.

Don’t implement security

algorithms yourself. Use the

libraries provided with the

device. If you need an algo-

rithm that does not come

with the device, source it

from an established security

organization.

WHITE PAPER BEST PRACTICES FOR ENCRYPTION IN ANDROID™ 4

4. Be very careful when designing systems that use encryption. It is easy to make

small mistakes which degrade or even eliminate the security measures.

PRACTICES RELATING TO SOFTWARE DESIGN AND
DEVELOPMENT:
5. Avoid the use of Java’s String class. Everything relating to holding plaintexts,

encrypting, decrypting, salts, initialization vectors, seeds, passwords and keys

should be done with char arrays or byte arrays. Oracle’s Java documentation

explains why:

“Objects of type String are immutable, i.e., there are no methods defined that allow you to change

(overwrite) or zero out the contents of a String after usage. This feature makes String objects unsuit-

able for storing security sensitive information such as user passwords. You should always collect and

store security sensitive information in a char array instead.”

As a practical matter, Android’s EditText field has Strings assigned into it at various points in the

implementation. So you cannot follow this best practice and use an Android EditText component to

collect a password or plaintext. The string you get back from EditText may remain visible to a process

that can dump your memory including interned Strings at some later point. Java solves the problem

in its Swing GUI library by having a JPasswordField method that returns a char array, not a String.

One Android solution is to create a new View based on android.graphics.Canvas,

with a key listener for accepting individual characters and assembling them into a

char[].

6. The UTF-8 character encoding specified for Android restricts the valid values of

bytes. The encoding allows up to 4 bytes for a character, in theory supporting 4.2

billion different values, but UTF-8 only has 1.1 million different characters. So the

effective keyspace is a lot smaller than the theoretical keyspace. You really have to

use high quality key generation algorithms when you use password-based

encryption.

Android’s character encoding can be problematic in other ways, too. The character encoding used

when converting a String into individual bytes is always “UTF-8” in Android, but varies among J2SE

implementations. Therefore whenever you construct a String, or you get the individual bytes repre-

senting a string with String.getBytes(), you should specify the character set to use in translation. If

you forget to do this, your code will compile, but fail to work correctly when ported to a J2SE imple-

mentation that uses a non-UTF-8 character set.

Depending on your system

requirements, you should

request a security profes-

sional to review your design

and approach.

Android Input Method Editors

also make extensive use of

Strings, and are thus open to

the same vulnerability (post-

execution memory dump har-

vesting of involuntarily-

retained interned Strings).

char [] getPassword();

WHITE PAPER BEST PRACTICES FOR ENCRYPTION IN ANDROID™ 5

7. Use unpredictable Initialization Vectors. Some block cipher modes require an Initialization Vector

(IV). The IV is picked at random at the beginning of the encryption process, and it is there to intro-

duce additional randomness into the ciphertext. The IV is typically transmitted to the recipient in a

plaintext header prepended to the ciphertext. A different IV must be used for each

message. It’s acceptable for an attacker to know what IV was used for a particular

message, but the attacker must not be able to predict the IV that will be used in a

future message.

The requirement for an unpredictable IV was also overlooked in SSL/TLS prior to

version 1.1. In those widespread early versions, the last block of the ciphertext for

message n was used as the IV for message n+1. The IV was thus completely pre-

dictable to an eavesdropper. In summer 2011, this was the basis of a chosen plain-

text man-in-the-middle attack on SSL (a theoretical attack by a couple of security

researchers, not an actual onslaught by career criminals). The penetration was

styled the BEAST attack, for “Browser Exploit Against SSL/TLS”. You can read

more about it in reference 5 below.

8. Do not use any message key indefinitely. Keep a count of “messages sent using this key” and

replace each key when it approaches the limit. After sending 2^48 AES blocks with CBC, the proba-

bility of decryption shifts too much in favor of an attacker. You must change the key at this point.

DES and 3DES require a key change after just 2^16 blocks. This is one of the reasons why AES has

For example, the use of low

order digits from the system

clock to provide a random

number is a common novice

mistake. If the attacker is on

the same machine (generally

assumed), he has perfect

foreknowledge of the values

coming from the system

clock.

Figure 2

A “Man-in-the-middle” attack

web browser attacker web server

WHITE PAPER BEST PRACTICES FOR ENCRYPTION IN ANDROID™ 6

a larger block size than older algorithms like DES or 3DES. AES allows you to

encrypt significantly more data before you have to change the key.

AES has another mode, known as “counter mode”, that lets you use the same key

up to 2^64 times. Developers are gradually transitioning to this slightly more

involved counter mode (it requires an additional parameter, known as a “number

used once”, usually abbreviated to nonce).

9. The setSeed() method of SecureRandom should only be used to generate pre-

dictable runs for testing. It has a common “silent failure” mode when misused.

Class java.security.SecureRandom is used to generate cryptographically secure

pseudo-random numbers. The class has a method setSeed() that causes the

instance to return a predictable sequence of numbers.

Many programmers assume from the name that calling setSeed() always resets

the internal state of the random number generator. In reality, once you have started to receive random

numbers by calling nextBytes(), setSeed() does not cause a reset. It uses the new seed to augment the

randomness produced. The method

would be more accurately named something like addMoreEntropy().

The misapprehension makes it easy for careless programmers to pass the same arguments to setSeed(),

but later get an unexpectedly different key back from generateKey(). The use of setSeed() outside of

testing is generally an indication of faulty design or coding.

To reliably generate a copy of a key starting from a password, you should use a PBE (password-based

encryption) algorithm. Never use the user password itself as the seed to SecureRandom, as that makes

brute force attacks too easy. Use the class java.security.SecureRandom to generate a seed number or an

initialization vector. These seed values don’t have to be kept secret, but you must remember them for

future use with this message.

conclusion
As most software developers readily appreciate, the proper use of encryption in mobile software is

both subtle and complex. We have reviewed a number of real world examples of flaws that transform a

seemingly-secure system into a system which is not resistant to attack, or - even worse - which actively

leaks data.

The best practices advocated here do not comprise an exhaustive list, but are intended to convey the sub-

tleties of the subject. For acceptable security, software developers are well advised to take college level

encryption courses, and use an understanding of the material in their work.

DES uses a block size of 8

bytes and requires a key

change after 2^16 blocks. So

you can only send

65K * 8 bytes (0.5 MB)

before a keychange.

AES supports 2^48 * 16

bytes (4.5 billion MB) when

using CBC mode, before a

key change is needed.

developer.motorola.com/enterprise

Screen images simulated, enhanced to show detail. MOTOROLA and the Stylized M Logo are registered trademarks of
Motorola Trademark Holdings, LLC. Android is a trademark of Google, Inc. All other product and service names are the
property of their respective owners. © 2012 Motorola Mobility, Inc. All rights reserved.

REFERENCES
1. Handbook of Applied Cryptography: the public-spirited authors have made their work available as a

free download from http://cacr.uwaterloo.ca/hac/, with a hardcover version available for purchase.

Computer security professionals frequently refer to this book, though it does not cover techniques

developed in the last decade (like AES).

2. A websearch for “online cryptography class” will provide many hits, including some free classes that

are offered by top US universities.

3. See http://docs.oracle.com/javase/1.5.0/docs/guide/security/jce/JCERefGuide.html#PBEEx

to review the admonition about use of Java Strings in cryptographic applications.

4. http://developer.motorola.com/docs/using_the_advanced_encryption_standard_in_android/ - a

MOTODEV technical article walking through a coding example using encryption.

5. More details on the 2011 BEAST attack on SSL/TLS can be found at:

http://blogs.cisco.com/security/beat-the-beast-with-tls/.

join the motodev for enterprise program
The MOTODEV for Enterprise program is designed to make it easy for you to get started developing

Android applications for your company and to support you throughout the development lifecycle.

As you begin to design mobile apps for your enterprise, you’ll find a wealth of technical documentation,

training and support for all aspects of Android development, including app security.

To sign up for a free account, visit: developer.motorola.com/enterprise.

